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Introduction 

An important goal of computational molecular biology is the development of tools to 

predict the function of a novel or newly identified protein. With the explosive expansion of 

sequencing data, particularly from world-wide large scale genomics and proteomics initiatives, 

the number of uncharacterized sequences has exponentially increased within the last decade. As 

of January 2008, there were more than 600 completely sequenced genomes of cellular 

organisms, contributing to more than five million unique protein sequences within publicly 

accessible databases
1
. The experimental determination of the functions of all these proteins is 

both economically and logistically impractical.  As such, only a fraction of sequences have had 

experimental confirmation of their function. In fact, at present only roughly 20%, 7%, 10% and 

1% of annotated proteins in the Homo sapiens, Mus musculus, Drosophila melanogaster and 

Caenorhabditis elegans genomes, respectively, have been experimentally characterized and 

annotated
2
. Thus there is a significant need for computational approaches to help direct the 

functional annotation of the life’s vast proteome. 

 

 

Figure 1 This figure shows the numbers (as a log scale) of genome sequences (PROTEIN), OFAMs (putative orthologous gene 
families), CATH-S30 (30% non-redundant sequence families), PFAM families, and CATH domain superfamilies, as more 
genomes are added to the database. (From Redfern & Orengo, 2008)

2 

 

Sequence based approaches 
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The easiest way to infer the function of an uncharacterized protein is through sequence 

similarity with a well characterized homologue. However, many newly identified sequences have 

few if any well characterized homologues. In these instances, computational methods can 

provide a first estimate of protein function. Some of these computational tools rely upon 

similarity grouping, phylogenomics, sequence patterns, sequence clustering, and machine 

learning (ML).While similarities due to common ancestry can often be identified by alignment 

techniques, either pairwise or profile-based, similarities produced by common selective pressures 

are more subtle and are best identified using ML techniques such as artificial neural networks, 

support vector machines (SVMs) or hidden Markov models (HMMs) adapted to the topology 

and sequential structure of protein specific functional patterns. These functional patterns can be 

local, taking the shape of linear motifs or regions, or they can be developed for more global 

features such as amino acid composition or pair frequencies, or by combinations of local and 

global features.  

 

Similarity group methods 

The results of a BLAST (Basic Local Alignment Tool) query against a public database 

can provide a picture of the functional properties of related sequences. By looking at the quality 

and number of hits, one gains an idea of how large or diverse the family of an uncharacterized 

protein is. Moreover, by looking at the descriptions of the hits, one can see how well annotated 

the family of an uncharacterized protein is.  Moreover, the dramatic increase in sequence 

information, the introduction of the Position Specific Iterated Blast (PSI-BLAST), and the 

establishment of the Gene Ontogney (GO) project have made similarity group methods a 

powerful tool for inferring protein function.  

The GO system provides researchers with the ability to screen microarray data for GO similarity 

in differentially expressed transcripts. The sequences returned in a similarity search will 

frequently be enriched in multiple different GO terms.  The more often a particular function 

appears, and the higher the quality of the hit scores, the more likely a particular protein will share 

this function. Because all parents of a given GO term can be scored, more general functional 

annotations for the query sequence can be supported by the occurrence of multiple more specific 

annotations in the list of hits.
3
 The GOtcha software was one of the first programs to implement 

this GO-based tool.
4
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PFP, the most recent implementation, uses three rounds of a PSI-BLAST search and a liberal 

threshold of sequence similarity.
5
 As such it is able to include the annotations of more remote 

homologues in the scoring process.  An additional source of improvement is the use of a 

‘functional association matrix,’ which can support a certain annotation based on its statistical co-

occurrence with other annotated sequences of high-quality.
6
  

 

The phylogenic approach 

Phylogenic approaches can improve the transfer of annotations by incorporating details 

of evolutionary relationships between protein families.  This helps address the difference 

between orthologous and paralogous proteins. That is, the difference between relatives linked by 

speciation and those linked by gene duplication.  The phylogenomic method is based on a 

standard work-through.
7
 This includes the identification of all homologoues of the query 

sequence and their alignment, the building of a phylogenetic tree from the homologues, the 

reconciliation of the tree, and the transferring of function from orthologues.
8
 Nearly three 

decades ago, Goodman and colleagues outlined the crucial step of reconciling the tree, which 

refers to the marking of all bifurcations in a tree as either the product of speciation or gene 

duplication.
9
  

A recent implementation of this idea is SIFTER, which tries to transfer GO annotations from 

orthologes and inparalogues from within the same domain family of the Pfam database.
10

 It 

accounts for different evolutionary speeds within a family by statistically modeling the evolution 

of molecular function.
11

  SIFTER, like the other similarity group methods, exploits the GO 

annotation structure and further weights inherited annotations by the reliability (GO evidence 

code) of the source annotation.
12

 Through thorough benchmarking and validation studies, the 

SIFTER analysis has been shown to yield highly specific and accurate annotations of protein 
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function.
13

 More recently, the SIFTER methodology has been integrated into a meta-server for 

eukaryotic sequence prediction by the AFAWE tool.
14

  

At present, similarity groups are ready for whole-genome application, meaning that they are 

relatively fast to compute and exhibit moderate precision levels.  Phylogenetic trees on the other 

hand, are still significantly slower, but provide more precise inferences of protein function. Much 

current work is aimed at extended both of these methods. The ‘Extended Similarity Group’ 

scheme is promising to be both more sensitive and accurate than its predecessor PFP.
15

 

Additionally, Brenner and colleagues are working to implement a scalable version of SIFTER 

that is amenable to whole genomes.
16

 

 

Pattern-Based Methods 

An alternative approach to using whole sequence homologues from public databases is 

the use of conserved pattern sequences or motifs. These conserved pattern sequences can often 

indicate the function of the entire protein, simply based on a few signature residues.  For 

instance, active site motifs can yield important information as to the catalytic functions of many 

enzymes.  Pattern based methods can focus on different levels of functional specificity, and are 

reflective of the different sizes and complexity of the patterns used. These patterns can include 

protein domains as well. The ‘Protein Feature Ontogeny’ makes it possible to annotate all these 

features in a formalized manner.
17

  

PROSITE pioneered the use of conserved patterns nearly 20 years ago, and has been steadily 

maintained and improved ever since.
18

 It scans a query sequence against short, position-specific  

residue profiles that are characteristic of individual protein families.  For example, these 

conserved residue motifs may be representative of the active site of a class of similar enzymes. 

PROSITE is complemented by ProRule, a collection of rules based on profiles and patterns, 

which increases the discriminatory power of profiles and patterns by providing additional 

information about functionally and/or structurally critical amino acid residues.
19
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A widely used gateway to pattern-based functional annotation is InterPro, which integrates 

collected patterns from different levels into hierarchically arranged database entries. The 

InterProScan server is a powerful meta-tool which scans a query sequence against a ten core 

member database from which the output is presented in a non-redundant manner.  

Among the most important of the InterPro domain profiles members are Pfam, SUPERFAMILY, 

PRODOM, SMART and, GENE3D. Of the protein profiles, PANTHER, PIRSF, and 

TIGRFAM’s are the most important. PRODOM is able to automatically cluster evolutionary 

conserved sequence clusters based on reiterative PSI-BLAST searches of the UnitProtKB 

database.
20

 All the others use hidden Markov Models (HMMs) generated by multiple sequence 

alignments to represent protein families.
21

  

In terms of domain similarity methods, the manually generated Pfam-A and the computationally 

generated Pfam-B together provide the highest coverage of known sequence space among the 

InterPro members.
22

 They are able to classify sequences in a large number of relatively small, 

functionally conserved families. SMART has a similar goal, but consists of a smaller, but 

completely manually curated set of families.
23

  

SUPERFAMILY and Gene3D are structurally based classifications. SUPERFAMILY assigns 

sequences to the domain families defined by SCOP (Structural Classification of Proteins), while 

Gene3D assigns sequences to domain families from the CATH database.
24,25

 While these 

database are much bigger than those used in Pfam, they are able to contain vary remote 

homologues that are often only detectable by structural conservation.
26

  Structure based inference 

will be discussed later in this paper. 

The PANTHER database attempts to delineate functional divergence within homologous protein 

families containing metazoan members.
27

 Expert curation is then able to split the families into 

functionally conserved subfamilies annotated with GO molecular function and biological process 

terms.
28

 TIGRFAMs focus on functional conservation as well, but their families contain 

‘equivalogs’, which are sequences of conserved molecular function, regardless of their 
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evolutionary relationship (ie. either orthologs, paralogues, and even the products of horizontal 

gene transfer).
29

 PIRSF uses ‘homeomorphic’ families of homologues, in which all members 

show full sequence similarity and a similar domain architecture, however not all of them share 

functional conservation.
30

  

 Profile based methods for predicting protein function follow a two step procedure. They first 

generate highly specific enzyme family profiles, and then assign unknown proteins to these 

families. Some methods incorporating this approach are the Cat-Fam method and its 

predecessors EFICAz and PRIAM.
31,32

  

 

 

Figure 2 Conserved sequence patterns can be  tied to protein function. This illustration shows an example sequence, with 
active site (green) and cofactor-binding site (blue) residues highlighted. The different InterPro member databases group 
protein sequences into families, based on conserved short patterns, fingerprints, domains or overall sequence similarity. 

 

Clustering Approaches 

A number of resources attempt to functionally annotate unknown proteins based on their 

clustering with characterized sequences. There are two principal approaches to sequence 

clustering. The first is clustering based on sequence similarity alone (homologues).  The second 

is clustering based on supposed functional conservation (orthologues and paralogues).  The first 

approach is incorporated in ProtoNet, which is an ambitious attempt at organizing sequences in 

trees of clusters.
33

 ProtoNet uses a sophisticated clustering method to cut down on computational 

cost, and although it is completely automatic, it is in high agreement with manually curated 
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resources.
34

 Moreover, annotation transfer based on these sorts of predominant features within 

known proteins, has been shown to be highly effective.
35

 Similar to ProtoNet, CluSTr is tightly 

integrated with UniProt and IPI, thus providing the most complete picture of the sequence 

space.
36

 However, in terms of basic benchmarking, ProtoNet produces the most accurate 

cluster.
37

  

eggNOG, InParanoid, and OrthoMCL, are the three most widely used databases focusing entirely 

on clustering only orthologues and inparalogues.
38,39,40

 Using orthologues and inparalogues as 

opposed to the entire sequence space is analgous to the difference between similarity and 

phylogenomic methods. eggNOG is a completely automatic way of clustering at different levels 

of taxonomy
38

. eggNOG assigns different domains to different orthologous groups, and as a 

result inherently accounts for sequence modularity. InParanoid is a repository of highly reliable 

pairs of orthologous proteins generated from model eukaryotic species. The MultiParanoid 

method expands these binary relationships to larger groups of orthologous proteins
39

. Both 

eggNOG and the InParanoid/MultiParanoid rely upon BLAST reciprocal best hits and/or 

triangular similarity relationships to nail down orthologues and inparalogues. OrthoMCL uses 

the popular Markov Clustering Alogorithm (MCL) to split coarse grained clusters
40

. A recent 

survey of similar clustering approaches found InParanoid and OrthoMCL to be the most accurate 

of these related resources
2
.  

 

Machine Learning  

Support Vector Machines (SVMs) are predictors used to assign a given input (i.e. a 

sequence) to one of two classes (i.e. whether it has a particular function or not). The 

classification task is performed based on several features associated with each input (i.e. 

different physical/chemical properties). In Figure 3a, each circle represents a protein sequence 

from a training dataset, and the X and Y coordinates represent two distinct sequence features. 

The colors denote the presence (orange) or absence (green) of a certain function, for example a 

specific GO annotation. To train an SVM on this set of sequences, one seeks to determine the 

line that optimally separates the vectors of the functional from those of the non-functional 
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sequences, and maximizing the ‘margin’ (the arrow measuring the distance between the dashed 

lines) in the process. The size of the margin is constrained by the ‘support vectors’ which are the 

ones closest to the soild separation line (vectors on the dashed lines). After the training process, 

the SVM(s) can be used to characterize sequences that were not part of the training set, and the 

algorithm will vote either ‘yes’ or ‘no’ for a particular function.  

The Neural Network (NN) approach is closely related to SVMs. Figure 3b shows a NN and its 

several layers of nodes. Here the input layer is orange, the output layers blue, and an arbitrary 

number of hidden layers are shown in green. Like real neurons, the nodes are connected. Each 

calculates an output from its different input values. The input nodes are fed with different signals 

(ie. sequence features shown as arrows). The output node ‘votes’ either yes or no (ie. for a 

certain GO term; this step is shown as a question mark). Networks are trained by adjusting the 

edge weights, which are the weights given to different input features (input layer) and their 

combinations (hidden layers). These weights are based on the known states of the output node 

for each training sequence. From this training an uncharacterized protein can have its functional 

features enumerated.  

 

Figure 3 Machine learning paradigms. A) SVM and B) Neural Networks 

 

The automated sequence annotation of sub-cellular localization is an important part of protein 

functional annotation. Perhaps the greatest success story in bioinformatics has been in the field 

of signal peptide prediction.  Current algorithms are approaching reliability and accuracy levels 

of experimentally derived data
2
. Indeed, computational predictions of sub-cellular localization 

are often of higher quality than the underlying experimental data.  The SignalP scheme was the 

first neural-network based approach that predicted the presence of a signal peptide and its 

cleavage site
2
. Another published machine learning approach that continue to perform well in 

this area is LOCTree, which is based on several binary SVM’s that are arranged in three different 

decision trees specific for plants, non-plants, and prokaryotes.
41

  Others include BaCeLo, which 
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is based on a decision tree of binary SVMs specific from animals, fungi, and plants, and TargetP, 

which is based on neural networks and has specificity similar to BaCeLo.
42

  

Machine learning algorithms have also been useful for predicting membrane insertion.  In 

general, topology predictors look for three important sequence characteristics of transmembrane 

alpha-helices. These are 1) a 20 amino acid long stretch of hydrophobic amino acids, 2) a 

flanking aromatic belt of tryptophan and tyrosine residues at the lipid-water interface, and 3) an 

overrepresentation of positively charged amino acids like lysine and arginine that are found in 

short cytoplasmic loops, referred to as the positive inside rule.
43

  Incorporating machine learning 

algorithms and evolutionary history based on sequence profiles has increased the accuracy of 

predicting membrane protein structures to upwards of 80%.
44

  

Newer algorithms are designed to pick up additional features that are characteristic of membrane 

function. These include lipid anchors and lipid modifications that are characteristic or particular 

membrane compartments.
45

  Indeed machine learning has transformed the field of predicting 

subcellular localization from sequence identity. However, the power of these techniques is not 

limited to single functional sequence based prediction. Machine learning has the ability to 

integrate various functional signals, ranging from key catalytic residues to signals for sub-

cellular localization and post-translational modifications in a more global inference of protein 

function.
46

 

ORFan’s are proteins or protein-encoding sequences within a genome that have no sequence 

similarity to proteins in other genomes. In the case that sequence queries return ORfan 

sequences, Machine-Learning approaches can provide useful hints regarding these unknown 

proteins’ function. Such approaches try to learn highly specific, characteristic combinations of 

sequence features, or their intensities, that match functional assignments within a training set of 

known sequences. Support Vector Machines (SVM) or neural networks which support these 

specific classifiers are then used to assign functions to unclassified proteins in a probabilistic 

manner.
47

  

The ProtFun server tries to accomplish this by assigning eukaryotic sequences to 1) one of 14 

GO categories, 2) one of 12 cellular roles from the Riley scheme, and 3) an EC class if an 

enzyme. Moreover it can integrate multiple other tools that predict other protein properties, such 
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as hydrophobicity, post-translational modifications, sub-cellular localization, secondary structure 

composition, and potential transmembrane regions.
48

 SVM-Prot is a similar predictor not limited 

to eukaryotic sequences and is able to specifically identify types of enzymes, receptors, kinases, 

transporters, and nucleic-acid binding proteins.
49

  

ffPred is a PSI-BLAST dependent tool developed by Lobey and colleagues that attempts to make 

feature prediction.
50

 It can consider disordered sequence regions and exploits the structure of the 

GO system to make accurate feature predictions.
51

 ffPred is able to characterize eukaryotic 

sequences with an outstanding functional coverage. EzyPred is used to identify uncharacterized 

enzymes and integrates domain and evolutionary information for enzyme/non-enzyme 

characterization and a prediction of the first and second EC number classifications.
52

 Moreover, 

EzyPred is able to accomplish these tasks with an accuracy of over 90%.
53

 

 

Figure 4. Integration of multiple sequence-based methods for function annotation (From Rentzsch & Orengo 2009) 

Summary of Sequence-Based Protein Function Annotation 

Clustering and similarity group methods only rely on one-to-one sequence comparisons, 

whereas pattern and phylogenomic approaches involve multiple sequence alignments. Machine 

Learning approaches rely instead on intrinsic sequence features but not sequence comparison to 

train their classifiers. In the case that the BLAST approach fails, one must work to find a 

consensus among these approaches to accurately infer protein function. Meta-servers that are 
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able to query multiple algorithms for sequence based protein prediction would be incredibly 

helpful in this task.  

Various analyses have suggested that for functional transferability, a 40% pair-wise sequence 

identity can be used as a confident threshold to transfer the first three digits of an EC number, 

but to transfer all four digits of an EC number with at least 90% accuracy, over 60% sequence 

identity is needed
2
. Lower thresholds can be used (30% sequence identity) for domain relatives 

that share similar multidomain contexts
2
. Furthermore, because gene families evolve at different 

rates, family-specific thresholds are safer and lead to higher levels of functional annotation in 

many genomes (for example, a five-fold increase in GO annotations in D. melanogaster).
2 

 

 

Combining sequence- and structure- based prediction 

Though functional assignment of uncharacterized proteins is commonly performed 

through sequence analysis, the assignment of function on the basis of homology can lead to 

incorrect or misleading annotations. Moreover, sequence-based predictions cannot identify new 

functions. The problem is compounded by the fact that there is no simple relationship between 

measures of sequence similarity, or sequence identity, and protein function. Highly similar 

proteins (with 60% sequence identity or greater) can catalyze distinct reactions, and highly 

divergent proteins can catalyze identical chemical reactions.
54

  

Babbit and others have used the enolase superfamily to illustrate this point extensively.
55

 In the 

enolase superfamily, a functionally diverse group of enzymes, misannotation of enzymatic 

function is severe. To address this, researchers have begun to incorporate structural and sequence 

information into their computational algorithms. Knowledge of the three-dimensional structure 

of a protein can provide crucial insight into its mode of action, but currently the structures of less 

than 1% of sequences have been experimentally solved, placing impetus on the development of 

computational processes that can guide our understanding of protein function.
56

  

At present, structural models of most protein sequences are only available by homology 

modeling approaches. However, in principle, sufficiently accurate computational methods could 

enable the construction of models that could be used as surrogates for experimentally determined 

structures. This could be incredibly useful in, for example, drug discovery or for understanding 

sequence-structure-function relationships. Babbit and colleagues demonstrated that it was 
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possible to predict the substrate specificity of a divergent member of the enolase superfamily 

based on docking against a homology model.
57

 Subsequent enzymatic characterization and 

crystallographic analysis confirmed their predictions.
58

 

The use of structural similarity in function prediction does face additional problems arising from 

artifacts of the crystallization procedure. A range of cognate and non-cognate ligands are used to 

stabilize the protein structure and facilitate the formation of crystals.
59

 In some cases, any 

conformational change that occurs during substrate binding can cause significant changes to the 

overall structure.
60

 Therefore, even structures of the same protein might exhibit significant 

structural differences when superimposed. However, structural data can be used to detect 

proteins with similar function whose sequences have diverged beyond the point where similarity 

that can be reliably detected using sequence comparison methods.
61

 In general, approaches to 

predict function from structure rely on trying to find globally similar structures and then, if no 

match is found, to focus on any structural similarities between known or predicted functional 

sites.
62

 

 

Predicting function by protein-fold comparison.  

Several popular methods for aligning and quantifying structural similarity relationships 

along the entire length of amino acid sequences are: DALI, CE, SSAP, STRUCTAL and 

CATHEDRAL.
63

 In these programs, attention is paid to both the quality of the superposition, and 

also the number of residues in the alignment. A key attribute of fold prediction is that the full 

alignment of two protein structures is not necessary for functional annotation. A recent approach 

scored the similarity of two proteins by simply comparing their internal residue contacts, which 

are those residues that co-locate within 8–10 Å in the structure.
64

 This helps detect additional 

similarities over global alignment methods. This type of approach can improve the computing 

time of large multi-sequence analysis tremendously.  
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There does, however exist a problem with the use of protein folds to predict function. Namely, 

folds can have different functions. An analysis of the CATH database revealed that although 

most domains that share the same fold are associated with a single function, a small number of 

'superfolds' (such as the Rossmann fold) can be associated with more than 50 different 

functions.
65

 Furthermore, these superfolds are the most common folds and account for over 50% 

of domain sequences with predicted structures.
66

 Moreover, in highly variable superfamilies such 

as the enolase family, different functions can evolve through secondary structure element 

insertion. Still, as a rule of thumb, most superfamilies with a high level of structural similarity 

also exhibit high functional similarity, but the supporting data is still at best sparse. 

 

Figure 5 (a) Two domains which differ by less than 5 Å (SIMAX) can vary structurally and share the same fold. (b) Two 
domains from the galectin-type carbohydrate recognition domain superfamily. 

Predicting function using local 3D templates.  
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During evolution, the local microenvironment of a protein’s active site must be preserved 

if that specific function is to be retained. This is so even if the folds or portions of the folds near 

the active site have been modified. Indeed, within an enzyme catalyst, a limited number of 

residues comprising the active site confer functional specificity. This introduces a problem when 

attempting to use whole fold comparison to assign function. Specifically, this approach is limited 

by the fact that small changes in a binding or active site can cause a divergence of function. As a 

consequence, there are several methods that focus on comparing smaller structural motifs 

associated with a specific function. 

One such method is found within the Catalytic Site Atlas, in which up to six catalytic residues 

per enzyme can be manually annotated from the literature.
67

 These annotations have been 

carefully transferred to close relatives using conservative PSI-BLAST profiles. The catalytic 

residues are used to construct structural templates, which are then queried by a fast search 

algorithm to compare unknown and known structures. Based on catalytic structure similarity, EC 

numbers can then be transferred.  

This task is not as simple as it sounds. Catalytic residues are known to alter their geometry 

relative to each other upon substrate binding. This kind of information is difficult to predict 

without empirical data. Additionally, recognizing the correct relative can be difficult. The 

probability of matching small structural templates at random is high, raising the number of false 

positive hits during a query. One attempt to address this problem compares the local 

environments around known or predicted catalytic residues and the corresponding residues in the 

matched protein.
68

 Using this localized approach, researchers can exploit the observation that the 

environment around the active site often exhibits higher sequence similarity than is evident 

across a global alignment of the query and matched structures. This provides a 

microenvironmental framework in which the catalytic residues must exist to confer a specific 

enzymatic function. 

Other related methods make use of similar knowledge-based approaches
 
to compare functional 

information (SITE records) that are found within the Protein Data Bank (PDB) structure files. 

However, this can be problematic because there are no set of standard rules for what information 

should be contained in the SITE records. Thus these files can contain a large amount of protein 

features (i.e. disulfide bridges, binding to unnatural ligands, information on mutated residues 

etc.) which may not be useful for functional comparison and annotation transfer. 

Manually designing structural templates for a particular function is a time intensive process. As 

such, several projects are underway to develop novel algorithms to derive these structural 
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templates automatically. One approach seeks to detect common structural motifs through the 

pairwise comparison of side chain members within diverse members of protein families.
69

 Then, 

these motifs can be scanned to see if they are present in uncharacterized proteins. Some 

algorithms also rely on common side-chain patterns within protein superfamilies, but make no 

assumptions about the nature or location of these motifs
69

. Since hydrophobic residues are 

usually found in a protein’s core, they are usually excluded from template construction. The 

smaller the motif, the more difficult it is to distinguish between genuine similarities and false 

positives. 

Babbit and colleagues have pioneered a novel approach of template building. Instead of using 

structurally conserved regions within protein families to identify 3D templates, they use random 

sequence-conserved residues in known enzyme structures to build their structural motif 

templates
69

. Interestingly, the best templates generally contain known functional residues, 

although there are also a few residues that have no known functional role. These non-reactive 

residues might afford a structural scaffold for catalytic or binding residues. 

 

Comparing local structural features.  

Comparing local structural features, such as the surface of a protein or pockets like the 

active site or ligand binding cleft, can yield important functional information regarding protein-

protein interactions and small molecule binding. Enzymes create unique chemical environments 

within active sites and binding clefts that allow them to efficiently catalyze chemical reactions. 

Often these microenvironments are characteristic of a particular function and can be exploited to 

infer protein function.  

In a fashion similar to 3D template searching, the binding sites of unannotated proteins can be 

compared against a library of known sites. This type of comparison is implemented in pvSOAR 

and related programs.
70

 Some groups have expanded on this theme by including comparisons of 

the chemical properties of the amino acids in the binding site. Hydrophobicity and electrostatic 

charge are two conservative features that can be used to determine genuine functional 

homologues. Such a method is implemented by programs such as SiteEngine.
71

 Similarly, 

binding sites with comparable physical/chemical properties can also be used to identify similar 

enzymatic functions. The eF-Site database builds on this by providing information of the 
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electrostatic potential of active site surfaces that are then used to identify similar patterns of 

charge during binding and protein-protein interactions.
72

  

Since these molecular interactions rely on electrostatic contacts between charged or polar 

residues, it is possible to use molecular cartography approaches to reduce protein surfaces to a 

spherical map.
73

 By comparing the distributions of hydrophobic and charged residues within two 

maps, one can identify functional subgroups within protein families. These approaches also have 

application in the prediction of a protein’s kinetic parameters. One can model protein 

electrostatics and predict the pKa values of ionizable groups within an active site by using 

theoretical microscopic titration curves.
74

  

 

 

Figure 6 Work Through for structure based protein annotation. (From Babbit & Colleagues 2008) 
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Servers for function prediction.  

A number of servers have begun to incorporate structural properties in their function 

inference. Two of the most convenient servers include ProFunc
75

 and ProKnow,
76

 which extract 

both structural and sequence data during a query using several of the methods outlined above. 

ProFunc combines BLAST and HMM searches with 3D template and surface-cleft analysis.
75

 

ProKnow extends this approach by providing a probability model for GO annotations.
76

 These 

and future meta-Servers have the potential to provide more accurate and complete functional 

annotations by combining several sequence and structure based methods for predicting protein 

function.  

 

Figure 7 Integration of Sequence- and Structure-Based Methods of Protein Function Annotation (From Rentzsch & Orengo 
2009) 

 

Conclusion 

With the advent of the structural genomics initiatives, an increasing number of protein 

structures are being experimentally determined while their function is still unknown. In these 

cases, function can sometimes be predicted by using the structure rather than the sequence of the 

protein. Analogous to sequence comparison, global comparisons can be made using fold-

comparison methods, usually by identifying the individual structural domains in a protein, and 

local comparisons can be made using structural templates from the active site of enzymes. Other 

features that can be used for function prediction when a structure is available include conserved 

surface patches, clefts and electrostatic potential. Although ‘inference through homology’ is still 
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the hallmark of function transfer, de novo methods of determining function based on machine 

learning schemes are gaining prominence.  

The success of computation molecular biology as a field is due in part to its ability to integrate 

previously separate data sets in biologically meaningful ways. The combination of sequence- and 

structure-based function transfer approaches is a promising field for future research. This is due 

to their complementary nature. Sequence and structure similarity can provide a safe basis for 

function transfer and predict molecular interactions that hint at the biological pathways and 

processes in which an uncharacterized protein participates. A future goal will be to leverage 

computational methods to generate protein interaction datasets for metagenomic sequences. We 

may get to a point where these ‘interactomes’ may help us learn about evolution on a larger more 

systemic level, one ranging from the molecular to the organismal. Future methods of modeling 

interactions will have to overcome the fact that orthologues from different species have very 

little overlap in their substrates. This could pose problems much like those that plagued function 

transfer based on sequence similarity. Thus it is imperative that a multitude of both sequence and 

structural methods be used to find a consensus that provides the clearest picture of protein-

protein interactions.  

 

Though function annotation transfer has steadily improved over the years, there is still a critical 

need for standardization in the terms of annotation. While the GO system provides an important 

step in this direction, it is by no means perfect. Functional granularity still varies considerably at 

different branches of ontogeny. This makes the GO directed acyclic graph (DAG), which seeks 

to measure the functional similarity between two GO annotated sequences, largely unreliable. 

The field would benefit if the GO system settled on one universally supported functional distance 

measure. Moreover the GO consortium could actively support a benchmarking standard for 

function prediction. The field should embrace third-party benchmarking and validation studies 

which could help improve the accuracy of function transfer. Going one step further, GO efforts 

should be integrated with text mining and develop a standard set of publication rules as a basis 

for both manual curation and automatic inference. This would help the field keep pace with the 

increasing amount of newly generated sequence data.  

 

For sequences that have already been produced, a two-pronged approach should be utilized. This 

should include both sequence and structural data. This would provide important guides for future 

experimental work on these uncharacterized proteins. For proteins whose functions have already 

been predicted, newer structural and sequence-based methods, like those outlined above could 

help repair misannotations in the public databases. In this manner a large number of proteins 

could be reannotated in a more accurate fashion.  

 

Finally, it is imperative that these methods be publicized to the larger biological community. 

More work should be done to educate experimental biologists in the effective use of 

computational methods. The expansion of user-friendly meta-servers will help make this a 



reality. This would greatly improve the applicability of new computation methods and provide 

the research community with powerful tools for understanding biology in a comprehensive, 

multidisciplinary manner.   


